Contact Information:

UIC – Department of Chemical Engineering, 810 S. Clinton, Chicago, IL 60607

Office: 215 CEB

View full profile

NSF-NATO Postdoctoral Fellowship, University of Cambridge, UK Department of Applied Mathematics and Theoretical Physics (DAMTP) 1989-1990

Ph.D., Massachusetts Institute of Technology Chemical Engineering 1989

B.S. (With High Distinction) University of Minnesota Chemical Engineering 1984

B.S. (With High Distinction) University of Minnesota Mathematics 1984

My research program emphasizes theoretical analysis of concrete micro-mechanical models in order to elucidate subcontinuum dynamics and to extract macroscopic transport behavior from the underlying microphysics.

UIC Award for Excellence in Teaching 2014

UIC College of Engineering Harold A. Simon Award for Excellence in Teaching 2012

UIC College of Engineering Faculty Teaching Award 2008

UIC CETL Teaching Recognition Program Award 2007

UIC College of Engineering Faculty Teaching Award 2006

USIA Fulbright Senior Scholar Program, Award #9498 (Austria, Research) 1999

NSF Young Investigator Award 1994

NSF-NATO Postdoctoral Fellowship 1989

[27] V. Sharma, M. Köllmer, M. Szymusiak, L. C. Nitsche, R. A. Gemeinhart and Y. Liu, Toroidal-spiral particles for codelivery of anti-VEGFR-2 antibody and irinotecan: A potential implant to hinder recurrence of glioblastoma multiforme, Biomacomolecules, 15 (3), 756-762 (2014). DOI: 10.1021/bm401550r

[26] L. C. Nitsche and P. Parthasarathi, Stokes flow singularity at the junction between impermeable and porous walls. J. Fluid Mech.,713, 183-215 (2012). DOI:10.1017/jfm.2012.454. Supplementary Material.

[25] M. Szymusiak M, V. Sharma V, L. C. Nitsche and Y. Liu, Interaction of sedimenting drops in miscible solution – formation of heterogeneous toroidal-spiral particles. Soft Matter, 8, 7556-7559 (2012). DOI: 10.1039/c2sm25928a.

[24] V. Sharma, M. Szymusiak, H. Shen, L. C. Nitsche, and Y. Liu, Formation of polymeric Toroidal-spiral particles, Langmuir, 28, 729-735 (2012). DOI: 10.1021/la203338v.

[23] Y. Lei, J. Jelic, L. C. Nitsche, R. Meyer and J. Miller, Effect of particle size and adsorbates on the L3, L2 and L1 X-ray absorption near edge structure of supported Pt nanoparticles. Topics in Catalysis, 54, 334-348 (2011). DOI 10.1007/s11244-011-9662-5.

[22] L. C. Nitsche and P. Parthasarathi, Cubically regularized Stokeslets for fast particle simulations of low-Reynolds-number drop flows.Chem. Eng. Commun., 197, 18-38 (2010). DOI: 10.1080/00986440903070809.

[21] N. S. Parkar, B. S. Akpa, L. C. Nitsche, L. E. Wedgewood, M. S. Sverdlov, O. Chaga and R. D. Minshall, Vesicle formation and endocytosis: Function, machinery, mechanisms, and modeling (Forum Review Article). Antioxidants & Redox Signaling, 11, 1301-1312 (2009). DOI: 10.1089/ars.2008.2397.

[20] L. C. Nitsche, Accurate asymptotic formulas for the transient PDF of a FENE dumbbell in suddenly started uniaxial extension followed by relaxation. J. Non-Newtonian Fluid Mech., 135, 109-116 (2006). DOI: 10.1016/j.jnnfm.2006.01.008.

[19] L. C. Nitsche, W. Zhang and L. E. Wedgewood, Asymptotic basis of the L-closure for finitely extensible dumbbells in suddenly started uniaxial extension. J. Non-Newtonian Fluid Mech., 133, 14-27 (2006). DOI:10.1016/j.jnnfm.2005.10.004.

[18] L. C. Nitsche, A. Nguyen and G. Evans, Globally cohesive drops without interfacial tension. Chem. Phys. Lett., 397, 417-421 (2004).DOI:10.1016/j.cplett.2004.09.006.

[17] S. Murad and L. C. Nitsche, The effect of thickness, pore size and structure of a nanomembrane on the flux and selectivity in reverse osmosis separations: a molecular dynamics study. Chem. Phys. Lett., 397, 211-215 (2004). DOI:10.1016/j.cplett.2004.08.106.

[16] L. C. Nitsche, G. Machu and W. Meile, Wavelets and fast summations for particle simulations of gravitational flows of miscible drops.Computers Chem. Eng., 28, 1873-1879 (2004). doi:10.1016/j.compchemeng.2004.03.001.

[15] L. C. Nitsche and W. Zhang, Atomistic SPH and a link between diffusion and interfacial tension. AIChE Journal, 48, 201-211 (2002).

[14] L. C. Nitsche and U. Schaflinger, A swarm of Stokeslets with interfacial tension. Phys. Fluids., 13, 1549-1553 (2001).

[13] G. Machu, W. Meile, L. C. Nitsche and U. Schaflinger, Coalescence, torus formation and break-up of sedimenting drops: experiments and computer simulations. J. Fluid Mech., 447, 299-336 (2001). DOI: 10.1017/S0022112001005882.

[12] L. C. Nitsche and E. J. Hinch, Shear-induced lateral migration of Brownian rigid rods in parabolic channel flow. J. Fluid Mech., 332, 1-21 (1997).

[11] L. C. Nitsche, Fluctuation-flipping orbits of freely-draining dumbbells in converging-diverging pore flows. Chem. Eng. Commun.,148-150, 593-621 (1996).

[10] L. C. Nitsche, One-dimensional stretching functions for patched grids, and associated truncation errors in finite-difference calculations. Commun. Numer. Methods. Eng., 12, 303-316 (1996).

[9] L. C. Nitsche, Cross-stream migration of bead-spring polymers in nonrectilinear pore flows. AIChE Journal, 42, 613-622 (1996).

[8] L. C. Nitsche, A singular perturbation analysis of antipolarization dialysis at high aspect ratio. Ind. Eng. Chem. Research, 34, 3590-3605 (1995).

[7] L. C. Nitsche and S. Zhuge, Hydrodynamics and selectivity of antipolarization dialysis. Chem. Eng. Sci., 50, 2731-2746 (1995).

[6] P. S. Grassia, E. J. Hinch and L. C. Nitsche, Computer simulations of Brownian motion of complex systems. J. Fluid Mech., 282, 373-403 (1995).

[5] L. C. Nitsche, Pseudo-sedimentation dialysis: an elliptic transmission problem. Quart. Appl. Math., LII, 83-102 (1994).

[4] E. J. Hinch and L. C. Nitsche, Nonlinear drift interactions between fluctuating colloidal particles: oscillatory and stochastic motions. J. Fluid Mech., 256, 343-401 (1993).

[3] L. C. Nitsche and H. Brenner, Hydrodynamics of particulate motion in sinusoidal pores via a singularity method. AIChE Journal, 36, 1403-1419 (1990).

[2] L. C. Nitsche and H. Brenner, Eulerian kinematics of flow through spatially periodic models of porous media. Arch. Rational Mech. Anal., 107, 225-292 (1989).

[1] L. C. Nitsche, J. M. Nitsche and H. Brenner, Existence, uniqueness and regularity of a time-periodic probability density distribution arising in a sedimentation-diffusion problem. SIAM J. Math. Anal., 19, 153-166 (1988).